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a b s t r a c t

We describe the Multiple-slip method for the construction of the displacement gradient tensor, which
describes the faulting-related deformation of the region. Three elements must be known for each fault:
(1) the fault plane orientation, (2) the slip direction, and (3) the number of parallel faults in the same size
range. The data on the orientation of faults and the direction of slip along them define the geometric
moment tensor for each fault, while the data on the number of parallel faults belonging to a particular
fault-set constrain the weighting factor for each fault. In the Multiple-slip method, the weighting factors
also depend on the stress state that produced the displacement along the faults. The stress state on the
observed faults at the time of faulting can be estimated from the paleostress analysis, which finds the
stress tensor capable of explaining the slip direction along the faults. Therefore, the Multiple-slip method
is a combination of kinematic and paleostress techniques, in which the paleostress analysis must be
performed prior to the kinematic analysis. The Multiple-slip method allows for calculating (1) the
direction of kinematic axes (directions of maximum shortening and extension), (2) the direction and
relative magnitude of rotation, and (3) the ratio between the principal strains.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The net result of a large number of distributed slip events on
faults in the Earth’s crust is a quasi-continuous deformation
referred to as cataclastic flow or fault strain (Cladouhos and All-
mendinger, 1993; Twiss and Unruh, 1998). The first attempts to
quantify this faulting-related strain were carried out by Oertel
(1965) and Freund (1970). Reches (1978, 1983) developed mathe-
matical theory for describing faulted medium as a continuum and
introduced tensor notation. This theory became the basis for the
kinematic analysis of faults, which allows reconstruction of the
principal characteristics of faulting-related strain from measure-
ments of the orientation of fault planes and the direction of slip
along them (fault-slip data). A similar approach was developed by
Kostrov (1974) and Molnar (1983) when describing deformation
related to earthquakes by the Moment Tensor Summation method
(MTS). Marrett and Allmendinger (1990) used the MTS approach
and the tensor notation of Reches in the kinematic analysis of fault-
slip data by first calculating the geometric moment and axes of
extension and shortening for each measured fault, and then finding
directional maxima of the shortening and extension axes for the
complete fault array by applying Bingham distribution statistics.
har).

ll rights reserved.
Kinematic analysis of fault-slip data was further improved by Cla-
douhos and Allmendinger (1993), who developed the FSFS method
(Finite Strain from Fault-Slip data) for calculating the finite strain
and the finite rotation of the deformed region. For analyzing
cumulative deformation in highly faulted regions the finite strain
approach of the FSFS method is probably better suited than the MTS
method, which assumes infinitesimal strain. The FSFS method can
also be used to reconstruct faulting-related block rotations in
regions affected by domino-style faulting (Cladouhos and Allmen-
dinger, 1993).

Most quantitative kinematic methods listed above (method of
Reches (1978, 1983), the MTS and FSFS methods) require weighting
of the fault-slip data with displacement, fault-surface area, and
average distance between faults of the same size range (Reches,
1978, 1983; Marrett and Allmendinger, 1990). However, collecting
these data often presents practical problems for field-based studies
and is sometimes even impossible, especially when faults are
poorly exposed. The only method avoiding this problem is the
method of Marrett and Allmendinger (1990), which is equivalent to
the MTS method with uniform weighting of the data.

In this article we describe the Multiple-slip method, which is an
extension of the method of Reches (1978, 1983), MTS method
(Kostrov, 1974; Molnar, 1983), and the kinematic analysis of Marrett
and Allmendinger (1990). Our main goal is to derive an alternative
way of calculating the weighting factors in the traditional infini-
tesimal approach of the moment tensor summation. We show that
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weighting of the fault-slip data can be performed based on (1) the
number of parallel faults of the same size range, (2) their orienta-
tion, and (3) direction of slip along them. It is advantageous to use
such approach, because the data needed by the Multiple-slip
method can be obtained relatively easily, even when faults are
poorly exposed. In the Multiple-slip method, the calculation of the
weighting factors is based on the theory of Linear Elastic Fracture
Mechanics (LEFM) and on the scaling properties of fracture and
fault systems (see Table 1). We show that the values of weighting
factors are also affected by the state of stress along the fault at the
time of faulting. For natural fault systems, usually the only way to
estimate the stress state that (re)activated the faults is the paleo-
stress analysis (e.g., Carey and Brunier, 1974; Angelier, 1979, 1984,
1989, 1994; Fry, 1992, 1999, 2001). Our Multiple-slip method
therefore combines kinematic analysis with the Gauss paleostress
method (Žalohar and Vrabec, 2007). The Multiple-slip analysis is
practically implemented in the T-TECTO 2.0 computer program
(available on the following website: http://www2.arnes.si/
wjzaloh/t-tecto_homepage.htm) and was thoroughly tested on
many artificial and natural fault systems.
2. Scaling of the fault systems

Numerous studies at various scales and in different tectonic
settings (see Bonnet et al., 2001, for a detailed overview) have
shown that the size distribution of many fracture and fault systems
follows a power-law (e.g., Marrett and Allmendinger, 1990; Bour
Table 1
Explanation of the important quantities used in the text

Symbol Explanation

N Number of faults with geometric moment smaller or equal to M
A Parameter related to the density of the faults
M Geometric moment of the fault
MS Seismic moment of the earthquake
S Fault surface area
u Average displacement along the fault
B Parameter related to the size-distribution of the faults
M1 and S1 Geometric moment and surface area of the smallest analyzed

fault
M2 and S2 Geometric moment and surface area of the largest analyzed fault
MT or MT Total geometric moment of a fault system
Ds Driving stress along the fault
c Geometric constant of the fault; depends on the geometry

of the model of the fault (circular fault, elliptical fault, etc.)
s! Shear stress along the fault
s! Slip direction along the fault
sðrÞ Resolved remote shear stress component in the direction

of movement along the fault
sr Residual frictional strength of the fault
m Coefficient of residual friction for sliding on a (re)activated

pre-existing fault
sn Average normal stress on the fault
_u ¼ _uij Strain rate
u ¼ uij Displacement gradient tensor
uðSÞ Symmetric part of the displacement gradient tensor, describing

the true deformation of the medium (the strain tensor)
W Antisymmetric part of the displacement gradient tensor

(the rotation tensor)
l
!

1, l
!

2 and l
!

3 Eigenvectors of the strain tensor uðSÞ

l1, l2 and l3 Eigenvalues of the strain tensor uðSÞ

f
!

Axis of rotation, the axial vector of the rotation tensor W
wi Weighting factor in the Multiple-slip method
Rm Rotation parameter in the Multiple-slip method
F Parameter describing the shape of the stress ellipsoid
D Parameter describing the shape of the strain ellipsoid
f2 Angle of residual friction for sliding on (re)activated

pre-existing faults

When the symbols are used to characterize individual faults or fault-sets, index i or k
is added, for example, Nk , Ak , etc.
and Davy, 1997, 1999; Main et al., 1999a,b, 2000; Main 2000a,b;
Berkowitz et al., 2000):

N ¼ A
MB / nðMÞ ¼

����dN
dM

���� ¼ B
A

MBþ1 (1)

where M is the geometric moment, A is a parameter related to fault
density, B is a distribution parameter, and N is a number of faults
with geometric moment smaller or equal to M. The geometric
moment M of a given fault is defined by the relationship M ¼ Su,
where S is the fault surface area and u is the amount of displacement
along the fault. Equation (1) is derived from the Gutenberg–Richter
law, which relates the earthquake magnitude m to the number of
earthquakes in a specified amount of time, and was shown to be
valid both in the regional and global scale (e.g., Main,1996, 2000a,b;
Main et al.,1999a,b, 2000; Udias,1999; Turcotte, 2001; Bonnet et al.,
2001; Al-Kindy and Main, 2003; Rundle et al., 2003). The value of
the parameter B varies from region to region and does not neces-
sarily remain constant during the seismic cycle or as strain localizes,
but several studies nevertheless suggest that the global value of this
parameter is approximately 2/3 (e.g., Kagan, 1997, 1999; Main and
Al-Kindy, 2002; Al-Kindy and Main, 2003).

In nature, power-laws are valid only over a certain range of
scales, limited by the upper Mmax and the lower Mmin boundary
(e.g., Main, 1996, 2000a,b; Main et al., 1999a,b, 2000; Turcotte,
2001; Bonnet et al., 2001; Main and Al-Kyndi, 2002; Al-Kindy and
Main, 2003). Intrinsic scale limit at the lower boundary may be due
to atomic bonds or grain sizes, depending on the nature of the
deforming materials (Bonnet et al., 2001). The upper limit has been
more extensively studied; here finite thickness of the crust or
sedimentary beds has been found to affect and violate simple
scaling-law behavior in distribution of fractures and earthquakes
(e.g., Davy, 1993; Volant and Grasso, 1994; Udias, 1999; Bonnet
et al., 2001). In this way, the number of faults with geometric
moment between M1 and M2 is:

NðM1 < M < M2Þ ¼

�������
Z M2

M1

nðMÞdM

������� ¼ A

"
1

MB
1

� 1
MB

2

#
(2)

and the total number of faults can be estimated as:

NT ¼ A

"
1

MB
min

� 1
MB

max

#
z

A

MB
min

(3)

Similarly, we can calculate the total geometric moment:

MT ¼

�������
Z Mmax

Mmin

MnðMÞdM

�������z
������
Z Mmax

0
MnðMÞdM

������ ¼
AB

1�B
M1�B

max (4)

There are three unknown parameters in these equations, A, B
and Mmax. However, the number of the unknown parameters can be
reduced to one (e.g., Scholz and Cowie, 1990; Marrett and All-
mendinger, 1991), since for the largest fault the following relations
hold:

logN ¼ log1 ¼ 0 and 0 ¼ logA� B logMmax (5)

therefore:

A ¼ MB
max (6)

The total geometric moment is then:

MT ¼
B

1� B
Mmax (7)

and from Equation (3) we obtain

http://www2.arnes.si/%223C%3Bjzaloh/t-tecto_homepage.htm
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Mmax ¼ ðNTÞ1=B
Mmin (8)

Because the value of the parameter B is known to be approxi-
mately 2/3, the only unknown parameter in this equation is the
geometric moment of the largest fault, Mmax. However, Equation (7)
is only valid when the distribution of the faults follows Equation
(1), ideally over the complete range of possible fault sizes from
Mmin to Mmax. It is known that for the largest faults/earthquakes the
distributions observed in nature are not completely consistent with
Equation (1) (e.g., Udias, 1999; Main, 2000b). If this is the case,
Equation (7) can be used only as an approximation, which,
however, depends on the case analyzed.
3. The driving stress

In natural fault systems the amount of slip u along the fault is
related to the size of the fault (e.g., Clark and Cox, 1996; Marrett,
1996; Cladouhos and Marrett, 1996; Udias, 1999; Bonnet et al.,
2001):

uwlb (9)

where b is a constant, and l is the fault length. A number of values
for b was proposed in the literature, ranging from 0.5 to 2 (Bonnet
et al., 2001). However, experimental and field-based studies
demonstrated that its real value is close to 1 (e.g., Cowie and Scholz,
1992a; Bonnet et al., 2001). This is also in agreement with seis-
mological studies (see Udias, 1999, for detailed discussion) and
simple theoretical models of LEFM (Schultz and Fossen 2002;
Gudmundsson, 2004; Xu et al., 2006). For a simple and planar fault-
geometry, and for faults in an infinite medium (finite thickness of
the crust or sedimentary beds may affect faulting) the LEFM
suggests a linear dependence of the amount of slip on the fault size
and the stress state along it:

u ¼ c,Ds
ffiffiffi
S
p

(10)

which is also the form adopted in seismology (Udias, 1999). In the
same manner we rewrite the equation for geometric moment
(Udias, 1999):

M ¼ Su ¼ c,DsS3=2 (11)

Here lw
ffiffiffi
S
p

represents the size of the fault, c is a parameter
accounting for the elastic properties of rock and the fault geometry,
and Ds is the driving stress. For faults, the driving stress is defined
as the resolved remote shear stress component in the direction of
movement sðrÞ ¼ s!, s!minus the residual frictional strength of the
surface sr (e.g., Jaeger and Cook, 1969; Cowie and Scholz, 1992b;
Cooke, 1997; Forest et al., 1997; Schultz and Fossen, 2002):

Ds¼ Max
�

0;
�
sðrÞ � sr

��
(12)

The residual frictional strength of faults is estimated as msn, where
m is the coefficient of residual friction for sliding on a (re)activated
pre-existing fault, and sn is the average normal stress during
faulting (e.g., Jaeger and Cook, 1969; Reches, 1978; Angelier, 1989;
Ranalli and Yin, 1990; Reches et al., 1992; Yin and Ranalli, 1992,
1995; Udias, 1999; Ranalli, 2000; Fry, 2001). Equation (12) also
assumes that only the faults on which the shear stress exceeds the
frictional strength can be active. Note that for a given outcrop the
same value of the coefficient of friction is used for all faults found in
the same rock type. We assume that the frictional shear strength of
faults depends on the type of the rock and not on the fault
orientation.
It is also important to note that in the case of seismic slip along
the fault the concept of the driving stress is equivalent to the
concept of the stress drop during rupture. This way, the resolved
remote shear stress component in the direction of movement sðrÞ

can be taken as an approximation of the stress-state on the fault
before failure, and the residual frictional strength sr of the fault can
be taken as representing the residual stress-state after failure, on
the assumption that the average normal stress does not change
considerably during the rupture (Udias, 1999).

When deformation is aseismic, the difference between the
resolved remote shear stress component in the direction of
movement sðrÞ and the residual frictional strength sr causes aseis-
mic elastoplastic and/or cataclastic flow of rocks, where most of
deformation is accommodated by aseismic movements along the
multiple fractures, dislocations and faults (e.g., Forest et al., 1997;
Twiss and Unruh, 1998). From the theory of plastic deformations
and frictional flow of rocks follows that the stress state is inde-
pendent of the strain rate, but depends on the viscous properties of
the deforming material (e.g., Forest et al., 1997; Dartevelle, 2003).
This means that the stress does not change rapidly during the
progressive elastoplastic/cataclastic deformation when the faults
grow and the fault system develops (e.g., Jaeger and Cook, 1969;
Dartevelle, 2003).

4. The multiple-slip mechanism

The calculation of incremental strain due to faulting in a region
has been solved by Kostrov (1974) and Molnar (1983) in seismo-
logical studies of earthquakes, using seismic moment tensor
summation:

_u ¼ _uij ¼
1

2GTV

XN

k¼1

MðkÞS mðkÞij (13)

where _u ¼ _uij is the total faulting-related strain rate, G is the shear
modulus, V is the volume of the deforming medium, T is the time
period of the earthquake record, and MðkÞS and mðkÞij are the seismic
moment and the moment tensor belonging to the k�th fault/
earthquake, respectively (Reches, 1978, 1983; Marrett and All-
mendinger, 1990; Kreemer et al., 2000). The seismic moment is
defined as MS ¼ GM, where M is the geometric moment. The
moment tensor mij is defined as the tensor product between the
unit vector Smin defining the slip direction along the fault, and
the unit normal vector to the fault plane, n!:

m ¼ mij ¼ s!5 n! (14)

The moment tensor is asymmetric because of the rotation inherent
to simple shear deformation resulting from the fault slip (Marrett
and Allmendinger, 1990).

The deformation due to the slip on a set of subparallel faults
with subparallel direction of movement is then (Marrett and All-
mendinger, 1990):

uk ¼
MT

k
V

mk ¼
MT

k
V
ð s!k5 n!kÞ (15)

where k denotes the index of the fault-set, and MT
k is the total

geometric moment of this k�th fault-set. We use the term ‘‘fault-
set’’ for a group of subparallel faults with subparallel direction of
motion, and the term ‘‘fault system’’ for a group of fault-sets with
different orientations. The total displacement gradient tensor due
to the movement along the faults belonging to all the fault-sets in
the fault system is calculated by summing (e.g., Reches 1978, 1983):

u ¼
X

k

MT
k

V
mk ¼

X
k

MT
k

V
ð s!k5 n!kÞ (16)
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Assuming that strain is small, u can be decomposed into symmetric
and antisymmetric parts, yielding the incremental strain and
rotation tensors, uðSÞ and W (Marrett and Allmendinger, 1990):

uðSÞ ¼ 1
2

�
uij þ uji

�
(17)

and

W ¼ 1
2

�
uij � uji

�
(18)

The eigenvectors l
!

1, l
!

2 and l
!

3 of the strain tensor uðSÞ give the
orientation of the principal incremental strain axes (kinematic
axes), and the eigenvalues l1, l2 and l3 give their magnitudes. We
use the sign convention from the theory of rock mechanics and
paleostress analysis (e.g., Jaeger and Cook, 1969; Reches, 1978,
1983; Angelier, 1994), with positive eigenvalues representing
shortening and compression, and negative eigenvalues represent-
ing extension and tension. We also choose that l1 � l2 � l3.
Because the volume of the faulted rock does not change consider-
ably during deformation, the trace of the strain tensor, TrðuðSÞÞ,
approximately equals 0 (Reches, 1978, 1983):

dV
V
¼ l1 þ l2 þ l3 ¼ Tr

�
uðSÞ

�
¼ 0 (19)

Additionally, because the faulted rock volume always undergoes
shortening in at least one direction, extension always appears in at
least one other principal direction (e.g., Reches, 1978, 1983). The
physical meaning of eigenvectors is therefore as follows: (1) vector
l
!

1 represents the direction of greatest shortening, (2) vector l
!

3
represents the direction of greatest extension, and (3) vector l

!
2

can represent shortening or extension, varying from case to case.
The rotation tensor W describes rotation of material lines during

deformation towards orientation parallel to the principal stretching
axes (Cladouhos and Allmendinger, 1993). The amount and direc-
tion of rotation are defined by the axial vector f

!
(Forest et al.,

1997):

f
!
¼ �1

2
3 W (20)

where

3 ¼ 3ijk ¼
1
2
ði� jÞðj� kÞðk� iÞ

represents a third-order permutation tensor. It is important to be
aware that the rotation tensor W does not represent the rotation of
rigid blocks between the faults (Cladouhos and Allmendinger,
1993), which can be measured by paleomagnetic or other methods.
When a faulted region is viewed as a continuum, only the rotation
of material lines is recognized, whereas the actual segments of the
material between the faults do not necessarily rotate (Marrett and
Allmendinger, 1990; Cladouhos and Allmendinger, 1993).

5. The Multiple-slip method

From Equation (16) follows that the strain and rotation tensors
uðSÞ and W can be calculated from:

uðSÞ ¼
"P

k

MT
k

V mk

#ðSÞ
¼
"P

k

MT
k

V s!k5 n!k

#ðSÞ
;

W ¼
"P

k

MT
k

V s!k5 n!k

#ðAÞ (21)

where k represents the index of the fault-set. The above equations
may only be used for homogeneous fault systems, which consist of
faults that were active at the same time in the same homogeneous
stress and strain fields. However, natural fault systems are often
heterogeneous as they typically comprise several homogeneous
subgroups of faults, belonging to two or more deformation phases
(e.g., Angelier, 1989; Nemcok and Lisle, 1995; Nemcok et al., 1999).
The fault system heterogeneity can furthermore be a consequence
of spatial and temporal variations of the stress and strain fields,
such as those present during rupture or successive ruptures, or at
the tip of a large fault. Because in general each homogeneous
subsystem accommodated unique deformation boundary condi-
tions, the deformation tensor calculated by applying Equations (21)
to the entire heterogeneous fault system would have no physical
meaning. Heterogeneous fault systems should therefore be sepa-
rated into homogeneous subsystems prior to kinematic analysis.
Additionally, fault slips affected by local stress and strain field
perturbations should also be eliminated. The separation and
filtering of fault-slip data can be effectively performed with the
Gauss paleostress method (Žalohar and Vrabec, 2007) or some
other paleostress technique for analyzing heterogeneous fault
systems (e.g., Angelier, 1979, 1984; Etchecopar et al., 1981; Armijo
et al., 1982; Nemcok and Lisle, 1995; Nemcok et al., 1999; Yamaji,
2000a,b, 2003; Yamaji et al., 2006).

The above Equations (21) will now be further simplified in the
way they are used in the Multiple-slip method. First, it is important
to realize that a natural homogeneous fault system can consist of
several fault-sets, and that the faults of each fault-set can follow
a different fault-size distribution. If we suppose that the distribu-
tion of faults belonging to a single fault-set can be approximated by
the power-law distribution Nk ¼ Ak=MBk , the complete distribu-
tion of all faults in the entire homogeneous system is
N ¼

P
k

Ak=MBk . This distribution follows the power-law distribu-

tion with the exponent B ¼ 2=3 only when Bk equals B for all
included fault-sets. From the global validity of the power-law
distribution with exponent B ¼ 2=3 (e.g., Kagan, 1997, 1999; Main
and Al-Kindy, 2002; Al-Kyndi and Main, 2003) we assume that in
mature fault systems the fault-size distributions of all constituent
fault-sets do indeed follow the power law distribution with
Bk ¼ B ¼ 2=3.

In the next step, we assume that the total geometric moment for
each fault-set is MT

k ¼ AkBkM1�B
max;k=ð1� BkÞ (Equation (4)). Solving

this equation requires that the values of fault density parameter Ak,
maximum geometric moment Mmax;k and distribution parameter Bk
are known prior to analysis. We showed that the acceptable value of
the parameter Bk is presumed to be 2=3. The other two parameters
can be determined by careful field measurements of fault-scaling
relationships and fault-size distribution. We may additionally
suppose that for each fault-set Ak ¼ MB

max;k (Equation (6)) and
Mmax;k ¼ ðNT

k Þ
1=BMmin (Equation (8)), which in the best scenario

leaves only the Mmax;k to be determined. However, the accurate
estimation of Mmax;k or/and Ak represents a difficult task for field-
based studies and is not always possible, especially when the faults
are poorly exposed. Therefore, the Multiple-slip method adopts
a different approach. The fault-slip data in many field-based studies
are collected at small outcrops, where just a portion of each fault
plane is visible. In the paleostress analysis the information on
orientation of faults and slip direction along them is enough to
make the calculation of paleostress tensor possible. It is advanta-
geous to use this approach also in the Multiple-slip method,
which then needs only one additional piece of information, and that
is the number of parallel faults of specified size belonging to each
fault-set.

To find the dependence of the weighting factors used in the
moment tensor summation on the number of faults belonging to
different fault-sets, we will now consider the following relations.
First, the displacement gradient tensor for each fault-set becomes:
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uk ¼
MT

k
V

mk ¼
BMmax;k

ð1� BÞVmk ¼
BMmin

ð1� BÞV

�
NT

k

�1=B
mk (22)

because Mmax;k ¼ ðNT
k Þ

1=BMmin (Equation (8)). If we take into
consideration that Mmin ¼ cDskS3=2

min (Equation (11)), we may also
write:

uk ¼
BcDskS3=2

min
ð1� BÞV

�
NT

k

�1=B
mk ¼

BcS3=2
min

ð1� BÞV
XNT

k

i¼1

Dsi

�
NT

k

�1=B

NT
k

mi (23)

where index i denotes the i�th fault. The driving stress Dsi along
the i�th fault is supposed to be equal for all faults of the k�th fault-
set, so Dsi ¼ Dsk. We also take into account that the minimum fault
surface area, Smin, is believed to be equal for all fault-sets, because it
is constrained by the scale of atomic bonds or grain sizes (e.g.,
Bonnet et al., 2001). The total displacement gradient tensor corre-
sponding to slip on faults from all fault-sets that comprise the
homogeneous system can be calculated by summing:

u ¼
X

k

"
BcS3=2

min
ð1� BÞVDsk

�
NT

k

�1=B
mk

#

¼
BcS3=2

min
ð1� BÞV

X
k

h
Dsk

�
NT

k

�1=B
mk

i
(24)

presuming that the parameters B, c, Smin and V have the same value
for all fault-sets. In order to calculate the total displacement
gradient tensor u, we should therefore know: (1) the orientation of
each fault and direction of slip along it (this constrain the moment
tensor mi), (2) the total number of faults belonging to each fault-set
NT

k , and (3) the driving stress on each fault Dsi ¼ ðsðrÞ � msnÞi.
Usually the total number of faults NT

k cannot be measured directly,
but can be estimated from the number of faults Nk of the size
ranging between S1 and S2. From Equations (2), (6) and (8) we
derive:

Nk ¼
ðcDskÞ

BS3B=2
min NT

k

ðcDskÞ
B

 
1

S3B=2
1

� 1

S3B=2
2

!

¼ NT
k

 
1

S3B=2
1

� 1

S3B=2
2

!
S3B=2

min (25)

So, NT
k equals:

NT
k ¼

Nk 
1

S3B=2
1

� 1

S3B=2
2

!
S3B=2

min

¼ NkK (26)

with K ¼ 1=½ðS�3B=2
1 � S�3B=2

2 ÞS3B=2
min �. In this way Equation (24) can

be rewritten in terms of Nk rather than NT
k :

u ¼
BcS3=2

minK1=B

ð1� BÞV
X

k

DskðNkÞ1=Bmk (27)

The next question is how to calculate the driving stress. In fault-slip
studies the stress state at the time of faulting can be reconstructed
from the paleostress analysis. The driving stress Dsi can then be
calculated from the reconstructed paleostress tensor. Therefore, the
Multiple-slip method should start with the paleostress procedure
using the Gauss paleostress method (Žalohar and Vrabec, 2007),
followed by the moment tensor summation. The advantage of the
Gauss method over other paleostress determination techniques is
that it enables determining the optimal coefficient of friction m for
sliding on the (re)activated pre-existing faults, which is required for
calculating the driving stress in the Multiple-slip method. With the
analysis of the Mohr diagrams the Gauss method also determines
the stress tensor of the form s ¼ const:strue, where strue repre-
sents the true stress state at the time of faulting, and const: is some
unknown constant. This allows the determination of the ratio of the
principal stress magnitudes. The actual magnitudes of the stress
tensor components can also be calculated, but only when newly
formed conjugate fault sets are present and the strength properties
of rocks (failure envelope) at the time of faulting are known (see
Angelier, 1989, for detailed discussion). These conditions are not
met in most cases, and the full stress tensor thus cannot be calcu-
lated. The tensor s ¼ konst:strue is used instead, since in this case
only the coefficient of friction for sliding along the (re)activated
pre-existing faults needs to be known (e.g., Angelier, 1989; Žalohar
and Vrabec, 2007). This tensor is used for calculating the shear and
normal stress components along each fault, which, however, allows
only the calculation of the ratio Ds1 : Ds2 : Ds3. between the
values of the driving stresses acting on the faults. This means that
the displacement gradient tensor u calculated by the Multiple-slip
method will also be of the form u ¼ const:utrue. Under these
constraints it is possible to calculate: (1) the direction of kinematic
axes, (2) the ratio between principal strains, and (3) the direction
and relative magnitude of rotation, while the actual magnitudes of
deformation and rotation remain unknown.

Taking into consideration the above discussion, the problematic
factors BcS3=2

minK1=B=ð1� BÞV in Equation (27) have to be neglected.
Using Equation (12) and simplified Equation (27), it follows that the
displacement gradient tensor linearly depends on the number of
faults having sizes between S1 and S2:
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where the weighting factors are defined as
wi ¼ ðN

1=B
i =NiÞ,Maxð0; ðsðrÞ � msnÞÞi. The appropriate value of Ni ¼

Nk should be known for each fault and/or fault-set. The weighting
factors wi can be calculated from the resolved driving stress and the
number of faults, Nk, with specified size belonging to different
fault-sets. Generally, the total number of faults, Nk, with the size
ranging between S1 and S2 in the volume V cannot be measured
directly, because the fault system might not be completely exposed.
Nk should be estimated from measurements of the average fault
density (defined as a number of faults of specified size per volume
V) at several outcrops. The average density n can be calculated as
the average of the density measurements from several outcrops
located in as wide an area as possible. If V 0 is the total volume of
exposed rocks in all observed outcrops, and V is the total volume
containing the complete fault system, the number of faults Nk can
be roughly estimated as NkznðV=V 0Þ. It is important to note that
the faulting related deformation is not homogeneous in the case of
spatially varying fault density of fractal fault systems (Bonnet et al.,
2001). Therefore, performing the Multiple-slip method for faults
observed at individual outcrops should be interpreted as a rough
approximation of the local strain field. In contrast, performing the
Multiple-slip method for combined measurements of faults in
several outcrops should be interpreted as a rough approximation of
the regional strain field accommodated by the complete fault
system in the volume V . How rough is this approximation of the
local or regional strain field, depends on the case analyzed, and
this can be checked by the T-TECTO computer program. The
program allows the user to manually change the values of the
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B�parameter, the coefficient of friction m, and the value of Nk for
each fault-set. Varying these parameters indicates how the inac-
curacy in sampling of the fault population (quantified by Nk and B)
and the inaccuracy in calculation of the driving stress ratio
Ds1: Ds2: Ds3. would affect results of the kinematic analysis.
Note that the driving stress depends on the coefficient of friction. If
the results are numerically stable when varying Nk, B and m for
a reasonable amount, they can be treated as reliable. Otherwise,
they should be interpreted with a great caution.

6. The rotation parameter

Because the Multiple-slip method generally does not provide
the full displacement gradient tensor as only the relative values of
its components are calculated, the total amount of rotation f

cannot be determined either. We can only calculate the direction of
the axial vector f

!
belonging to the rotation tensor W. Therefore, we

define another measure for the relative amount of rotation, the
rotation parameter Rm:

Rm ¼
��uð9Þ

��� ��uðSÞ;ð9Þ
����uð9Þ

�� (29)

where

��uð9Þ
�� ¼ kðu11;u22;u33;u12;u13;u23;u21;u31;u32Þk;��uðSÞ;ð9Þ
�� ¼ kðu11;u22;u33;u12;u13;u23;u12;u13;u23Þk

(30)

The rotation parameter Rm represents a normalized measure of the
relative magnitude of rotation. It is defined as the difference between
the displacement gradient tensor and its symmetric part, which are
represented by nine-dimensional vectors uð9Þ and uðSÞ;ð9Þ in the nine-
dimensional parameter-space of the components of the displace-
ment gradient tensor. The possible values of Rm range from 0, rep-
resenting no rotations, to 1, representing the largest rotations.

7. Testing the Multiple-slip method

The efficiency and reliability of the Multiple-slip method is
demonstrated on one natural and several artificial fault-slip data-
sets. The artificial datasets were generated by AmontonWin
computer program, which is part of the T-TECTO suite. Amonton-
Win generates a prescribed number of faults which are either
randomly orientated, or follow a pre-defined distribution of
orientations. The direction of slip along the faults is set parallel to
the resolved shear stress on the fault planes, calculated from the
input stress tensor. In Test 1, the faults were generated under the
stress state characterized by maximum compression in the N–S
direction and minimum compression in the W–E direction, while
the intermediate stress axis was vertical. The ratio between the
principal stress magnitudes was set to 0:96: 0:26: 0:09, so the value
of the parameter F ¼ ðs1 � s2Þ=ðs1 � s3Þ was 0.2. In Test 2, the
faults were generated in extensional stress state with maximum
compression vertical. In Test 1 and Test 2 initial paleostress analysis
is therefore not required since the stress tensors are known. Only for
the Test 3, in which we analyze a natural fault system, the paleo-
stress analysis was needed prior to the moment tensor summation
in order to calculate the paleostress tensor. In the next step of the
analysis of all three cases, the weighting factors wi were calculated
for all faults based on the resolved driving stress and the number of
faults belonging to different fault-sets. Finally, the moment tensor
summation was performed by using the weighted data.

7.1. Test 1

In Test 1 we investigated how the asymmetry of the fault system
influences the calculated relative magnitude of rotation. We
analyzed four artificial fault systems with faults in parallel, conju-
gate and random orientation, shown in Fig. 1.

7.1.1. Case 1
The most asymmetric fault system consists of only one fault-set

(Fig. 1a). In this case the calculated axis of rotation is parallel to the
intermediate kinematic axis l

!
2. The l

!
1 and l

!
3 axes, which

represent the direction of the maximum shortening and extension,
are horizontal and inclined at an angle of 45� with respect to the
average strike of fault planes. The intermediate kinematic axis is
vertical and lies on the fault planes. The maximum shortening and
maximum extension have N–S and W–E directions, respectively.
The calculated value of the parameter D ¼ ðl1 � l2Þ=ðl1 � l3Þ is
0.5. In addition, the Multiple-slip method indicates the CW sense of
rotation around vertical axis (indicated by the symbol 5) with the
rotation parameter Rm equal to 0.71.

7.1.2. Case 2
This example represents a more symmetric fault system (Fig. 1b)

than Case 1. However, its two fault-sets do not consist of the same
number of faults. The first fault-set consists of 20 NW–SE striking
dextral strike-slip faults, while the second fault-set consists of only
10 NE–SW striking sinistral strike-slip faults. The calculated relative
magnitude of rotation is smaller than in Case 1. If faults follow the
power-law size-distribution with the B value of 2/3, the calculated
rotation parameter Rm is equal to 0.44. The rotation has CW sense
around vertical axis (indicated by the symbol 5). The calculated
value of the parameter D ¼ ðl1 � l2Þ=ðl1 � l3Þ is 0.49.

7.1.3. Case 3
The case represents a fully symmetric conjugate fault system,

where both fault-sets have the same number of faults (Fig. 1c). The
calculated value of the rotation parameter Rm is 0.09. Theoretically,
the rotation parameter should be equal to 0. However, the value
obtained by the Multiple-slip method is different from 0 due to the
angular dispersion of fault orientations, which was purposely
introduced during the fault-generating stage in order to obtain
more realistic data. The calculated value of the parameter
D ¼ ðl1 � l2Þ=ðl1 � l3Þ is 0.49.

7.1.4. Case 4
The last case analyzed in Test 1 consists of 50 faults with random

orientation. We expect the deformation accommodated by such
fault system to be symmetrical, and the Multiple-slip method
confirms this assumption. The calculated rotation parameter
Rm is only 0.14, and the calculated value of the parameter
D ¼ ðl1 � l2Þ=ðl1 � l3Þ is 0.31.

The results of Test 1 show that the relative magnitude of the
rotation (quantified by the parameter Rm) is directly related to the
asymmetry of the fault system. Highly asymmetric fault systems
accommodate large rotations (high value of Rm), while symmetric
fault systems can only be active in the non-rotational strain field
(low value of Rm).
7.2. Test 2

In Test 2 we analyzed dependence of the calculated strain on the
coefficient of residual friction. For this purpose we generated two
fault-sets in extensional stress regime with maximum compression
vertical (Fig. 2). The first fault-set consists of 20 south-dipping normal
faults, and the second set consists of 20 NW–SE striking normal-
dextral faults. The resolved stress depends on fault orientation and is
not the same for the two fault sets (Fig. 2b). Because the weighting
factors in the Multiple-slip method depend on the driving stress
Dsi ¼ sðrÞ � msn, which has the friction coefficient m ¼ tan f2 as



Fig. 1. An example illustrating the dependence of the calculated relative magnitude of rotation in the case of fault systems exhibiting different degree of asymmetry. The orientation
of kinematic axes is indicated by large arrows, and the direction of rotation is indicated by the symbol 5. (a) In the case of a single fault-set the clockwise rotation is largest, and its
relative magnitude is represented by the rotation parameter Rm ¼ 0:71. (b) This case represents a conjugate fault-system with two perpendicular fault-sets. However, the fault
system is not symmetrical, because the two fault-sets contain different numbers of faults. There are 20 NW–SE striking dextral strike-slip faults and 10 NE–SW striking sinistral
strike-slip faults. The relative magnitude of rotation, quantified by the rotation parameter Rm equal to 0.44, is smaller than in Case (a). (c) This case represents ideally symmetric
conjugate fault system consisting of two fault-sets with equal number of faults. The rotations are almost absent, which is indicated by the small value of the rotation parameter,
Rm ¼ 0:09. (d) The last case represents a symmetric fault system consisting of 50 randomly orientated faults. In this case the rotations are also almost absent, which is indicated by
Rm ¼ 0:14.
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a parameter, the value of the friction coefficient will directly influence
the results of the Multiple-slip method. This is demonstrated in
Fig. 2c and d, where f2 ¼ 00 and f2 ¼ 200 were used, respectively.
In both cases, the value of the parameter D ¼ ðl1 � l2Þ=ðl1 � l3Þ
differs from that of F ¼ ðs1 � s2Þ=ðs1 � s3Þ, which is equal to 0.2.
We obtain D ¼ 0:27 in the first case and D ¼ 0:14 in the second. Test
2 demonstrates importance of the frictional shear strength of faults
on the estimation of the faulting-related deformation.

7.3. Test 3

In Test 3 we analyzed a natural fault system observed in the
Cretaceous limestone of the Vremščica quarry in Slovenia
(lon ¼ 14,088�, lat ¼ 45,679�), located in the Outer Dinarides fold-
and-thrust belt. We measured the orientation and direction of slip
along 42 faults (Fig. 3a) with fault surface area ranging from around
1 m2 to 100 m2, and the length of faults ranging from around 1 m to
10 m. First we performed paleostress analysis using the Gauss
method. The Mohr diagram (Fig. 3b) gives the friction coefficient
m ¼ tan ð350 � 50Þ ¼ 0:7� 0:15. From the Mohr diagram it is
evident that the inversion results are in agreement with the theory
of fault-reactivation, since for all faults the resolved shear stress
exceeds frictional strength, illustrated by a straight line s ¼ 0:7sn

(Amonton’s law). The calculated stress tensor shows that faults
were active in a strike-slip stress regime with maximum horizontal
compression in the NNW–SSE direction, and with the parameter
F ¼ ðs1 � s2Þ=ðs1 � s3Þ equal to 0.1 (Fig. 3a). This stress state is
typical of the post-orogenic Pliocene-recent strike-slip deformation
episode in the northern Dinarides (e.g., Vrabec and Fodor, 2006).

Paleostress calculation was followed by the Multiple-slip
method, the results of which are shown in Fig. 3c and d. In the
test shown in Fig. 3c the moment tensor summation was
performed using unweighted data, whereas in the test shown
in Fig. 3d the data were weighted with weighting factors
w ¼ ðN3=2=NÞðsðrÞ � 0:7snÞ. Here N represents the number of faults
belonging to the particular fault-set, while sðrÞ and sn are the
resolved shear stress in the direction of movement and the normal
stress, respectively. We defined three fault-sets with average
orientation of faults 220/70, 180/40 and 270/80, comprising 9, 4 and
6 faults, respectively. All other faults have random orientation,
therefore they were interpreted as belonging to a random fault
array and were weighted with w ¼ 1,ðsðrÞ � 0:7snÞ.

Results of the Multiple-slip method show little variation
between the two cases (Fig. 3c and 3d). Calculated kinematic axes
are approximately parallel to the principal axes of the paleostress
tensor, and value of the parameter D ¼ ðl1 � l2Þ=ðl1 � l3Þ is 0.44
in both cases. In the first case the direction of the rotation axis is
219/22, with Rm ¼ 0:28, while in the second case the direction of
the rotation axis is 245/5, with Rm ¼ 0:26. In both cases the results
indicate CW sense of rotation around a nearly horizontal axis.



Fig. 2. An example illustrating the effect of the frictional shear strength of faults on the calculated direction of kinematic and rotation axes. (a) The fault system consists of two fault-
sets compatible with extensional stress state with maximum compression vertical. (b) Mohr diagram illustrates the state of stress on the faults. sn is the normal stress and s is the
shear stress. (c) and (d) show the results of kinematic analysis obtained by the Multiple-slip method using two different values of the coefficient of friction m ¼ tan f2. Here f2
represents the slope of the straight line illustrating the Amonton’s law on the Mohr diagram shown in (b). Large arrows indicate shortening or extension. See text for details.
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Test 3 demonstrates that the asymmetry of the fault system is
related to the relative magnitude of the rotation accommodated by
the faults, which was also shown in Test 1. The fault system
analyzed in Test 3 is almost symmetrical, because it has accom-
modated nearly non-rotational deformations.

8. Discussion

The question whether stress (paleostress analysis) or strain
(kinematic analysis) approach is better suited to fault-slip data
treatment is a subject of much discussion (e.g., Marrett and Peacock,
1999; Nieto-Samaniego, 1999; Tikoff and Wojtal, 1999; Watterson,
1999; Pollard, 2000; Gapais et al., 2000). An useful insight into this
problem can be found in the continuum theory of dislocations and in
the theory of crystal plasticity (e.g., Forest et al., 1997, 2000), which
are well-defined physical theories. The continuum theory of dislo-
cations is a way to think of dislocation theoryas a physical field theory
(Forest et al.,1997). In this theory, yielding and hardening behavior of
crystals mainly depends on the growth of dislocation population and
on the development of dislocation structures inside the volume
element V (Forest et al., 2000). Plastic deformation of crystals is
related to activation of slip systems, which are defined by numerous
small dislocations. Equations that describe the kinematics of the
elastoplastic deformation must be constrained by flow rules and
hardening laws. In several studies a formulation of viscoplasticity is
adopted through the generalized Schmid law (Forest et al., 1997).
Basic mathematical description (1) of the multi-mechanism
plasticity of crystals and (2) of the moment tensor summation in the
description of faulting-related deformation are quite similar. Within
the framework of the moment tensor summation, faults are treated
in the same way as dislocations or slip systems in the theory of crystal
plasticity. It is also assumed that a dense fault array can be described
as a continuum of dislocations. This further suggests that the fault
strain could be related to stress through some similar relationship to
that of the Schmid law in the theory of crystal plasticity. Indeed,
a correspondence with the Schmid law can be found in the theory of
LEFM with its concept of the driving stress. The only difference is that
the driving stress does not account for the history of deformations,
whereas the Schmid law does. Therefore, the results of the Multiple-
slip method only describe the final stage of the deformation
accommodated by the faults.

Because the driving stress is used in the Multiple-slip method,
Equation (28) represents an explicit constitutive relationship
between the stress and strain, where the strain tensor is directly
related to the stress tensor and to the material internal structure,
which is defined by spatial and orientational distribution of faults. If
we assume that the deforming material is isotropic, the principal
axes of the strain and stress tensors are parallel and proportional in
the magnitudes, and the values of the parameters F and D are equal
(e.g., Etchecopar et al., 1981; Twiss and Unruh, 1998; Tikoff and
Wojtal, 1999). However, results of our numerical tests show that in
the case of asymmetric fault systems, such as that analyzed in Test
2, a large inconsistency exists between the stress and strain, which
indicates a more complex stress–strain relationship. The material



Fig. 3. Analysis of the natural fault system observed in the Vremščica quarry in Slovenia. The system consists of 42 faults compatible with strike-slip stress regime that has
maximum horizontal compression in the NNW–SSE direction (a). Thick dashed lines show bedding orientation, while thin dashed lines show joint orientation. Mohr diagram (b)
indicates that the coefficient of friction at the time of faulting was 0:7� 0:15. (c) and (d) show the results of the Multiple-slip method for unweighted data (c), and for weighted data
(d). Large arrows indicate shortening or extension. See text for details.
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behavior is therefore strongly dependent on its anisotropy, defined
by the asymmetry of the fault system present within. In addition,
different values of the parameters F and D obtained in Tests 1 and 3
also indicate complex and non-linear stress–strain relationship. In
fact, in Tests 1 (a), (b) and (c) no relationship between the param-
eters F and D exists, because the deformation is two-dimensional
with l2 ¼ 0, l1 ¼ �l3 and D ¼ 0:5, in which case the interme-
diate principal stress and the parameter F have no effect on the slip
direction along the faults (e.g., Jaeger and Cook, 1969).

The theory of the Multiple-slip method implies that a simple
kinematic analysis is not always sufficient to correctly constrain the
faulting-related strain. This suggests that the classical view of the
kinematic analysis being independent from the paleostress analysis
should be abandoned. In contrast to other known paleostress and
kinematic techniques, the Multiple-slip method makes possible
a combined stress–strain analysis of fault-slip data.

9. Conclusions

The Multiple-slip method is a simple and quick way for esti-
mating principal characteristics of faulting-related strain. The aim
of this method is (1) to calculate the direction of kinematic axes,
which represent the direction of maximum shortening and exten-
sion, and (2) to estimate the direction and relative magnitude of
faulting-related rotation. To apply the Multiple-slip method, three
elements must be known for each fault: (1) the fault plane orien-
tation, (2) the slip direction, and (3) the number of parallel faults in
the same size range. Weighting factors in the Multiple-slip method
depend on the number of faults in a particular fault-set and on the
driving stress. The driving stress on each fault is calculated from
the slip direction and the paleostress tensor, which represents the
stress state at the time of faulting. Because the stress tensor is
needed in the Multiple-slip method for the strain tensor calcula-
tion, the analysis also requires reconstruction of the paleostress
state. In the Multiple-slip method, the calculated paleostress tensor
should be of the form s ¼ const:strue, where strue represents the
true stress state at the time of faulting, and const: is some unknown
constant. When analyzing natural fault-slip data, it is supposed that
the actual magnitudes of the paleostress tensor are usually not
known (e.g., Angelier, 1989, 1994). Consequently, the displacement
gradient tensor calculated by the Multiple-slip method will also be
of the form u ¼ const:utrue. This means that kinematic analysis of
the fault-slip data using the Multiple-slip method usually only
allows estimation of (1) the direction of kinematic axes, (2) the ratio
between the principal strains, and (3) the direction and relative
magnitude of rotation. The relative magnitude of rotation is
quantified by the rotation parameter Rm. Values of Rm close to
0 indicate a small amount of rotation, while values close to 1
indicate large rotation. This rotation does not represent the rotation
of the blocks bounded by the faults, but it represents the rotation of
material lines attached to the rock continuum.

The Multiple-slip method can be used to constrain the stress–
strain relationship associated with faulting. Our tests of the method
suggest that the stress–strain relationship depends on the frictional
properties of faults and on the material anisotropy, which is
controlled by the degree of asymmetry of the fault system.
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nique élémentaire appliqué a I’étude d’une population de failles. Comptes
Rendus de l’Académie des Sciences, Paris D279, 891–894.

Cladouhos, T.T., Allmendinger, R.W., 1993. Finite strain and rotation from fault slip
data. Journal of Structural Geology 15, 771–784.

Cladouhos, T.T., Marrett, R., 1996. Are fault growth and linkage models consistent
with power-law distributions of fault lengths? Journal of Structural Geology 18,
281–294.

Clark, R.M., Cox, S.J.D., 1996. A modern regression approach to determining fault
displacement-length scaling relationships. Journal of Structural Geology 18,
147–154.

Cooke, M.L., 1997. Fracture localization along faults with spatially varying friction.
Journal of Geophysical Research 102, 22425–22434.

Cowie, P.A., Scholz, C.H., 1992a. Displacement-length scaling relationship for faults:
data synthesis and discussion. Journal of Structural Geology 14, 1149–1156.

Cowie, P.A., Scholz, C.H., 1992b. Physical explanation for the displacement-length
relationship of faults using a post-yield fracture mechanics model. Journal of
Structural Geology 14, 1133–1148.

Dartevelle, S., 2003. Numerical and Granulometric Approaches to Geophysical
Granular Flows, Ph.D. thesis, Michigan Technological University, Michigan.

Davy, P., 1993. On the frequency-length distribution of the San Andreas fault system.
Journal of Geophysical Research 98, 12.141–12.151.

Etchecopar, A., Vasseur, G., Daigniers, M., 1981. An inverse problem in micro-
tectonics for the determination of stress tensors from fault striation analysis.
Journal of Structural Geology 3, 51–65.

Forest, S., Cailletaud, G., Sievert, R., 1997. A Cosserat theory for elastoviscoplastic
single crystals at finite deformation. Archives of Mechanics 49, 705–736.

Forest, S., Barbe, F., Cailletaud, G., 2000. Cosserat modelling of size effects in the
mechanical behaviour of polycrystals and multi-phase materials. International
Journal of Solids and Structures 37, 7105–7126.

Freund, R., 1970. The geometry of the faulting in the Galilee. Israel Journal of Earth
Sciences 19, 117–140.

Fry, N., 1992. A robust approach to the calculation of paleostress fields from fault
plane data: Discussion. Journal of Structural Geology 14, 635–637.

Fry, N., 1999. Striated faults: visual appreciation of their constraint on possible
paleostress tensors. Journal of Structural Geology 21, 7–21.

Fry, N., 2001. Stress space: striated faults, deformation twins, and their constraints
on paleostress. Journal of Structural Geology 23, 1–9.

Gapais, D., Cobbold, P.R., Bourgeois, O., Rouby, D., Urreiztieta, M., 2000. Tectonic
significance of fault-slip data. Journal of Structural Geology 22, 881–888.

Gudmundsson, A., 2004. Effects of Young’s modulus on fault displacement. C.R.
Geoscience 336, 85–92.

Jaeger, J.C., Cook, N.G.W., 1969. Fundamentals of Rock Mechanics. Methuen, London,
515 pp.

Kagan, Y.Y., 1997. Seismic moment-frequency relation for shallow earthquakes:
Regional comparison. Journal of Geophysical Research 102, 2835–2852.

Kagan, Y.Y., 1999. Universality of the seismic moment-frequency relation. Pure
Applied Geophysics 155, 537–573.

Kostrov, V.V., 1974. Seismic moment and energy of earthquakes, and seismic flow of
rocks. Izvestiya Academy of Sciences of the USSR (Physics of Solid Earth) 1, 23–40.

Kreemer, C., Haines, J., Holt, W.E., Blewitt, G., Lavallee, D., 2000. On the determi-
nation of a global strain rate model. Earth Planets Space 52, 765–770.
Main, I.G., 1996. Statistical physics, seismogenesis, and seismic hazard. Reviews of
Geophysics 34, 433–462.

Main, I.G., 2000a. A damage mechanics model for power-law creep and earthquake
aftershock and foreshock sequences. Geophysical Journal International 142,
151–161.

Main, I.G., 2000b. Apparent breaks in scaling in the earthquake cumulative
frequency–Magnitude distribution: fact or artifact? Bulletin of the Seismolog-
ical Society of America 90, 86–97.

Main, I.G., Al-Kyndi, F.H., 2002. Entropy, energy, and proximity to criticality in global
earthquake populations. Geophysical Research Letters 29, 1121,, doi:10.1029/
2001GL014078.

Main, I.G., Irving, D., Musson, R., Reading, A., 1999a. Constraints of frequency–
magnitude relation and maximum magnitudes in the UK from observed seis-
micity and glacio-isostatic recovery rates. Geophysical Journal International 137,
535–550.

Main, I.G., Leonard, T., Papasoulitiotis, O., Hatton, C.G., Meredith, P.G., 1999b. One
slope or two? Detecting statistically significant breaks of slope in geophysical
data, with application to fracture scaling relationships. Geophysical Research
Letters 26, 2801–2804.

Main, I.G., O’Brien, G., Henderson, J.R., 2000. Statistical physics of earthquakes:
Comparison of distribution exponents for surface area and potential energy and
the dynamic emergence of log-periodic energy quanta. Journal of Geophysical
Research 105, 6105–6126.

Marrett, R., 1996. Aggregate properties of fracture populations. Journal of Structural
Geology 18, 169–178.

Marrett, R., Allmendinger, R.W., 1990. Kinematic analysis of fault-slip data. Journal
of Structural Geology 12, 973–986.

Marrett, R., Allmendinger, R.W., 1991. Estimates of strain due to brittle faulting:
sampling of fault populations. Journal of Structural Geology 13, 735–738.

Marrett, R., Peacock, D.C.P., 1999. Strain and stress. Journal of Structural Geology 21,
1057–1063.

Molnar, P., 1983. Average regional strain due to slip on numerous faults of different
orientations. Journal of Geophysical Research 88, 6430–6432.

Nemcok, M., Lisle, R.J., 1995. A stress inversion procedure for polyphase fault/slip
data sets. Journal of Structural Geology 17, 1445–1453.

Nemcok, M., Kovác, D., Lisle, R.J., 1999. A stress inversion procedure for polyphase
calcite twin and fault/slip data sets. Journal of Structural Geology 21, 597–611.

Nieto-Samaniego, A.F., 1999. Stress, strain and fault patterns. Journal of Structural
Geology 21, 1065–1070.

Oertel, G., 1965. The mechanism of faulting in clay experiments. Tectonophysics 2,
343–393.

Pollard, D.D., 2000. Strain and stress: discussion. Journal of Structural Geology 22,
1359–1367.

Ranalli, G., 2000. Rheology of crust and its role in tectonic reactivation. Journal of
Geodynamics 30, 3–15.

Ranalli, G., Yin, Z.-M., 1990. Critical stress difference and orientation of faults in
rocks with strength anisotropies: the two-dimensional case. Journal of Struc-
tural Geology 12, 1067–1071.

Reches, Z., 1978. Analysis of faulting in three-dimensional strain field. Tectono-
physics 47, 109–129.

Reches, Z., 1983. Faulting of rocks in three-dimensional strain fields II. Theoretical
analysis. Tectonophysics 95, 133–156.

Reches, Z., Baer, G., Hatzor, Y., 1992. Constraints on the strength of the upper crust
from stress inversion of fault slip data. Journal of Geophysical Research 97,
12.481–12.493.

Rundle, B.J., Turcotte, D.L., Shcherbakov, R., Klein, W., Sammis, C., 2003. Statistical
physics approach to understanding the multiscale dynamics of earthquake fault
systems. Reviews of Geophysics 41, 1019, doi:10.1029/2003RG000135.

Scholz, C.H., Cowie, P.A., 1990. Determination of total geologic strain from faulting.
Nature 346, 837–839.

Schultz, R.A., Fossen, H., 2002. Displacement-length scaling in three dimensions:
The importance of aspect ratio and application to deformation bands. Journal of
Structural Geology 24, 1389–1411.

Tikoff, B., Wojtal, S.F., 1999. Displacement control of geologic structures. Journal of
Structural Geology 21, 959–967.

Turcotte, D.L., 2001. Self-organized criticality: Does it have anything to do with
criticality and is it useful? Nonlinear Processes in Geophysics 8, 193–196.

Twiss, R.J., Unruh, J.R., 1998. Analysis of fault slip inversions: Do they constrain
stress or strain rate? Journal of Geophysical Research 103, 12,205–12,222.

Udias, A., 1999. Principles of Seismology. Cambridge University Press, Cambridge,
475 pp.

Volant, P., Grasso, J.R., 1994. The finite extension of fractal geometry and power-law
distribution of shallow earthquakes: A geomechanical effect. Journal of
Geophysical Research 99, 22.879–22.889.

Vrabec, M., Fodor, L., 2006. Late Cenozoic tectonics of Slovenia: structural styles at
the north eastern corner of the Adriatic microplate. In: Pinter, N. (Ed.), The Adria
Microplate: GPS Geodesy, Tectonics and Hazards. NATO Science Series IV, 61.
Earth and Environmental Sciences, pp. 151–168.

Watterson, J., 1999. The future of failure: stress or strain? Journal of Structural
Geology 21, 939–948.

Xu, S.-S., Nieto-Samaniego, A.F., Alaniz-Álvarez, S.A., 2006. Effect of sampling and
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